HOW ARE COGNITIVE SYSTEMS ORGANIZED?

ARCHITECTURES FOR INTELLIGENT AGENTS
FODOR ON THE MODULARITY OF MIND
THE MASSIVE MODULARITY HYPOTHESIS
HYBRID ARCHITECTURES
Cognitive scientists tend to think of the mind as an organized collection of specialized sub-systems carrying out specific information-processing tasks.
ARCHITECTURES FOR INTELLIGENT AGENTS

ONE OF THE AIMS OF AI RESEARCHERS IS TO BUILD INTELLIGENT AGENTS
THREE DIFFERENT TYPES OF AGENT ARCHITECTURE

Agent: System that perceives its environment through *sensory systems* of some type and acts upon that environment through *effector systems*. Different types of agent is distinguished by the complexity of the links between sensory systems and effector systems.

1. A simple reflex agent
2. A goal-based agent
3. A learning agent

Ex) the robot SHAKEY, Shopping bots (internet)
A SIMPLE REFLEX AGENT

• Condition-action rules (production rules): IF condition C holds THEN perform action

• Simple reflex agents are not cognitive systems
 • Cognitive systems represent the environment
 • Cognitive systems can react differently to the same environmental stimulus
A GOAL-BASED AGENT

- Working out the consequences of different possible actions and then evaluate those consequences in the light of their goals.
A LEARNING AGENT

- Existence of sub-systems that operate inside the agent (the Critic sub-system)
- How are we to identify and distinguish cognitive sub-systems?
- Are there any important differences between the sub-systems responsible for sensory processing and motor behavior, on the one hand, and those that operate between those input and output sub-systems?
- Do all the sub-systems in a cognitive system process information in the same way? Do they all involve the same type of representations?
- How “autonomous” are the different sub-systems? How “insulated” are they each from each other?
FODOR ON THE MODULARITY OF MIND
• Mind contains autonomous cognitive sub-systems (*The modularity of Mind*, 1983 - Jerry Fodor)
• Phrenologist Franz Joseph Gall
• Existence of domain-specific cognitive system (vs. domain-general, for example, attention, memory, etc.)
Domain-specific: modules are highly specialized

Informational encapsulation: independent, unaffected by other modules

Mandatory application: responding automatically to stimuli of the appropriate kind

Speed: Transformation of inputs to outputs is quick and efficient

Fixed neural architecture

Specific breakdown patterns: ex. Prosopagnosia
• *Central Processing is Quinean and Isotropic* (holistic and not informationally encapsulated)
• *Informational encapsulation*: independent, unaffected by other modules

The Muller-Lyer illusion
ILLUSORY MOTION
INFORMATIONAL ENCAPSULATION?

- Muller-Lyer illusion is affected by environmental, cultural differences
- McGurk effect
THE MASSIVE MODULARITY HYPOTHESIS
MASSIVE MODULARITY HYPOTHESIS

- Fodor thought that central processing is non-modular because it is not informationally encapsulated.
- The massive modularity hypothesis released the “informationally encapsulation” assumption from the requirements for modularity.
HYBRID ARCHITECTURES
ACT-R/PM COGNITIVE ARCHITECTURE

• ACT-R/PM: Adaptive Control of Thought - Rational/Perceptual-Motor
• Two layer system: perceptual-motor layer and cognition layer. Communication between layers is done through a number of buffers
• Cognition layer is built upon two types of knowledge (declarative and procedural)
• Declarative knowledge is organized in terms of ‘chunks’, procedural knowledge is represented in terms of production rules.
ACT-R/PM COGNITIVE ARCHITECTURE

• What makes decision? Central processing? Selection of production rule?
 • Pattern matching module performs this job
 • Calculation of utility of each production rule
 • Activation levels of chunks determine the selection
ACT-R/PM COGNITIVE ARCHITECTURE

- What makes decision? Central processing? Selection of production rule?
 - Pattern matching module performs this job
 - Calculation of utility of each production rule
 - Activation levels of chunks determine the selection

Table 10.2 Comparing the symbolic and subsymbolic dimensions of knowledge representation in the hybrid ACT-R/PM architecture

<table>
<thead>
<tr>
<th>PERFORMANCE MECHANISMS</th>
<th>LEARNING MECHANISMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYMBOLIC</td>
<td>SYMBOLIC</td>
</tr>
<tr>
<td>Declarative chunks</td>
<td>Adding new declarative chunks to the set</td>
</tr>
<tr>
<td>Knowledge usually facts that can be directly verbalized</td>
<td>Changing activation of declarative chunks and changing strength of links between chunks</td>
</tr>
<tr>
<td>SUBSYMBOLIC</td>
<td>SUBSYMBOLIC</td>
</tr>
<tr>
<td>Relative activation of declarative chunks affects retrieval</td>
<td>Adding new production rules to the set</td>
</tr>
<tr>
<td>Knowledge for taking particular actions in particular situations</td>
<td>Changing utility of production rules</td>
</tr>
<tr>
<td>Relative utility of production rules affects choice</td>
<td></td>
</tr>
<tr>
<td>Add new production rules</td>
<td></td>
</tr>
</tbody>
</table>